The importance of mechanical loading in bone biology and medicine.
نویسنده
چکیده
This paper discusses the premise that the skeleton is primarily a mechanical organ, and reviews the reasons that mechanical factors play a major role in bone biology. It begins by considering three basic observations: (1) Galileo's observation that bone proportions become more robust as the species' overall size increases; (2) da Vinci's observation that larger structures are inherently weaker than smaller structures subjected to the same stress; and (3) the general observation that each unit of bone mass provides structural support for about 15 units of soft tissue organ mass. Together, these observations lead to the concept that it can be advantageous to minimize bone mass, consistent with constraints on other factors. This premise is discussed here in relation to the phenomenon of bone remodeling, which is seen to serve two purposes: the adjustment of bone mass and geometry to maintain peak bone strains at their maximum tolerable values, and the continual removal of fatigue damage produced at those strain levels. Finally, it is observed that bone remodeling apparently originated approximately 250 million years ago when the first vertebrates of substantial size became weight-bearing on land, suggesting that mechanical forces associated with weight-bearing were instrumental in the evolution of bone remodeling.
منابع مشابه
An investigation of the effects of osteoporosis, impact intensity and orientation on human femur injuries: a parametric finite element study
Objective: Femur is the strongest, longest and heaviest bone in the human body. Due to the great importance of femur in human body, its injury may cause large numbers of disabilities and mortality. Considering various effective parameters such as mechanical properties, geometry, loading configuration, etc. can propel the study to the trustable results.. Methods: A 3D finite element model of the...
متن کاملA polycaprolactone bio-nanocomposite bone substitute fabricated for femoral fracture approaches: Molecular dynamic and micromechanical Investigation
The application of porous bio-nanocomposites polymer has greatly increased in the treatment of boneabnormalities and bone fracture. Therefore, predicting the mechanical properties of these bio-nanocompositesare very important prior to their fabrication. Investigation of mechanical properties like (elasticmodulus and hardness) is very costly and time-consuming in experimental t...
متن کاملA defect-in-continuity in the canine femur: and in-vivo experimental model for the study of bone graft incorporation.
The in-vivo study of bone graft incorporation has traditionally used a segmental diaphyseal bone defect. This model reliably produces a nonunion, but is complicated by graft instability and altered limb loading stresses. The authors discuss the advantages of a defect-in-continuity canine femur model which produces a more consistent union with fewer mechanical complications despite the absence o...
متن کاملPoly (lactic-co-glycolic)/nanostructured merwinite porous composites for bone tissue engineering: II. structural and in vitro characterization
Several characteristics of a novel PLGA/Merwinite scaffold were examined in the present study to evaluate the possible applications in bone tissue regeneration. Physical and mechanical properties, as well as degradation behavior and in vitro bioactivity of porous scaffolds produced by solvent casting and particle leaching technique were also characterized. Results showed that incorporation of m...
متن کاملEffects of Bone Marrow Mesenchymal Stem Cells-Conditioned Medium on Tibial Partial Osteotomy Model of Fracture Healing in Hypothyroidism Rats
Background: Hypothyroidism is associated with dysfunction of the bone turnover with reduced osteoblastic bone formation and osteoclastic bone resorption. Mesenchymal stem cells (MSCs) secrete various factors and cytokines that may stimulate bone regeneration. The aim of this study was to determine the effects of MSCs-conditioned medium (CM) in hypothyroidism male rats after inducing bone ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of musculoskeletal & neuronal interactions
دوره 7 1 شماره
صفحات -
تاریخ انتشار 2007